

Component Knowledge

- Calculate angles in a pie chart
- Draw a pie chart from a table
- Interpret pie charts using fractions
- Interpret pie charts using angles

<u>Key Vocabulary</u>			
Angle	The amount of turn between 2 lines.		
Pie chart	A chart that displays data proportionally.		
Protractor Equipment used to measure and draw angles			

Drawing pie charts

How many degrees for one person?

 $\frac{360}{90} = 4^{\circ}$

 $360 \div \text{total} = \text{degrees for one person. In this example one person is } 4^\circ$.

Subject	Number of Students	Calculation	Angle	
Maths	40	40 × 4°	160°	
English	30	30 × 4°	120°	Multiply number of students by 4° to
History	20	20 × 4°	80°	get the angle.
Total	90		360°	

Systematic listing

and Product rule

Component Knowledge

- To be able to list the possible outcomes of different events.
- To be able to use the product rule to determine the number of outcomes for different events.

		<u></u>						
	Outcome	The possible result of ar	n experiment					
	Product	The answer when two o	r more numbers are multiplied together.					
•	Systematic listing							
	Systematic listing			1				
	Systematic listing is the mo	ethod of listing all the pos	ssible outcomes of an event.	ļ				
	Worked example							
	Worked example			1				
	At the ice cream kiosk, you	u can choose one flavou	r of ice cream and one topping .	, 1				
	Flavour		Toppings					
•	Vanilla		Flake					
	Chocolate		Sprinkles	-				
	Banana	·	Nuts]				
,	Inere are 9 possible comb	onations:	Nuto					
	Chocolato and Elako, Choc	solate and Sprinkles, Vanilla and	Nuls	ļ				
	Banana and Elake Banana	and Sprinkles, Banana ar	of Nuts	1				
	bunana ana nake, bunana	rana oprinkico, bariana ar		1				
		•••••		• • •				
	Product rule for counting			••'				
	<u>Product rule for counting</u> Product rule uses multiplic	cation to determine the n	umber of possible outcomes of an event rather thar	••'				
	<u>Product rule for counting</u> Product rule uses multiplic listing them all.	cation to determine the n	umber of possible outcomes of an event rather thar	ייייייייייייייייייייייייייייייייייייי				
	Product rule for counting Product rule uses multiplic listing them all.	cation to determine the n	umber of possible outcomes of an event rather thar	ייייייייייייייייייייייייייייייייייייי				
	<u>Product rule for counting</u> Product rule uses multiplic listing them all. <u>Worked example.</u>	cation to determine the n	umber of possible outcomes of an event rather thar					
	<u>Product rule for counting</u> Product rule uses multiplic listing them all. <u>Worked example.</u> A safe has a 4-digit combin	cation to determine the n nation for example 4 5 7 8	umber of possible outcomes of an event rather thar	1				
	<u>Product rule for counting</u> Product rule uses multiplic listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir	cation to determine the n nation for example 4 5 7 & nd the number of 4-digit c	umber of possible outcomes of an event rather thar 3 combinations you can have on this safe.	ייי				
	<u>Product rule for counting</u> Product rule uses multiplic listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit o 0 possibilities (0, 1, 2, 3, 4	umber of possible outcomes of an event rather than 3 combinations you can have on this safe. 4, 5, 6, 7, 8 and 9)	••• [/]				
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit c 0 possibilities (0, 1, 2, 3, 4 = 10 (1 st digit) x 10 (2 nd dig	umber of possible outcomes of an event rather than 3 combinations you can have on this safe. 4, 5, 6, 7, 8 and 9)	••'				
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1 Number of combinations =	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit o 0 possibilities (0, 1, 2, 3, 4 = 10 (1 st digit) x 10 (2 nd dig	umber of possible outcomes of an event rather than 3 combinations you can have on this safe. 4, 5, 6, 7, 8 and 9) git) x 10 (3 rd digit) x 10 (4 th digit) = 10,000	••'				
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1 Number of combinations =	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit o 0 possibilities (0, 1, 2, 3, 4 = 10 (1 st digit) x 10 (2 nd dig	umber of possible outcomes of an event rather than 3 combinations you can have on this safe. 4, 5, 6, 7, 8 and 9) git) x 10 (3 rd digit) x 10 (4 th digit) = 10,000					
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1 Number of combinations =	cation to determine the n nation for example 4 5 7 & nd the number of 4-digit o .0 possibilities (0, 1, 2, 3, 4 = 10 (1 st digit) x 10 (2 nd dig	umber of possible outcomes of an event rather than 3 combinations you can have on this safe. 4, 5, 6, 7, 8 and 9) git) x 10 (3 rd digit) x 10 (4 th digit) = 10,000	-				
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1 Number of combinations =	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit o 0 possibilities (0, 1, 2, 3, = 10 (1 st digit) x 10 (2 nd dig <u>Onlin</u>	umber of possible outcomes of an event rather than sombinations you can have on this safe. 4, 5, 6, 7, 8 and 9) git) x 10 (3 rd digit) x 10 (4 th digit) = 10,000	·				
	<u>Product rule for counting</u> Product rule uses multiplie listing them all. <u>Worked example.</u> A safe has a 4-digit combin Use the product rule to fir Each digit has a possible 1 Number of combinations =	cation to determine the n nation for example 4 5 7 8 nd the number of 4-digit o 0 possibilities (0, 1, 2, 3, 4 = 10 (1 st digit) x 10 (2 nd dig	umber of possible outcomes of an event rather than sombinations you can have on this safe. 4, 5, 6, 7, 8 and 9) git) x 10 (3 rd digit) x 10 (4 th digit) = 10,000 The clip	•••				

Probability

Component Knowledge

- Understand what probability shows
- Understand probability notation
- Write a probability of a single event

Key Vocabulary The mathematical chance, likelihood, of an outcome happening Probability Event The "thing" that is being completed/done/observed/counted (Event) Outcome What happens when the event is performed A numerical scale from 0 to 1, with 0 being an impossible outcome and 1 being **Probability scale** an outcome certain to happen Mutually exclusive When outcomes cannot happen at the same time eg being an adult and being a (event) outcomes child, you cannot be both When a set of outcome cover all possibility with no gaps eg it snowing and it Exhaustive (event) outcomes not raining **Probability:** The probability of an (event) outcome A, happening is $P(outcome A) = \frac{number of ways outcome A can happen}{number of ways any outcome can happen}$ e.g. the probability of rolling a number 4 on a regular 6 sided dice Outcome "4": 4, so 1 option $P(roll \ a \ 4) = \frac{1}{6}$ All possible outcomes: 1, 2, 3, 4, 5 or 6, so 6 possibilities altogther e.g. the probability of rolling a number greater than 4 on a regular 6 sided dice Outcomes "greater than 4": 5 or 6, so 2 options $P(roll \ a \ number \ greater \ than \ 4) = \frac{-}{6}$ All possible outcomes: 1, 2, 3, 4, 5 or 6, so 6 possibilities altogther **Online clips** M655, M941, M938, M755

Frequency

Component Knowledge

- Understand what relative frequency is
- Calculate experimental probability
- Use relative frequencies or experimental probabilities to estimate expected outcomes

Key Vocabulary

Probability	The mathematical chance, likelihood, of an outcome happening			
Event	The "thing" that is being completed/done/observed/counted			
(Event) Outcome	What happens when the event is performed			
Brobability scale	A numerical scale from 0 to 1, with 0 being an impossible outcome and 1 being			
Probability scale	an outcome certain to happen			
Theoretical probability	Probability based on reasoning			
Experimental Probability	Probability estimated from the results of conducting an experiment (set of			
	observations)			
Frequency	The number of times something happens			
Polativo froguency	The number of times an event outcome happens relative to the number of			
Relative frequency	times the event takes place (number of times experiment is conducted)			
Number of Trials	The number of times an experiment is conducted			
Expected outcomes	The number of times you would expect a particular (event) outcome to happen			
(Expectation)	for a specified number of trials			

Experimental Probability:

An *estimate* of the probability of an (event) outcome A, happening when an experimental is conducted

number times outcome A happened

 $ExP(outcome A) = \frac{1}{number of times event takes place (total number of trials)}$

e.g. If a biased coin is flipped 20 times and lands on tails 7 times

 $ExP(lands on tails) = \frac{7}{20}$

Relative Frequency:

The number of times (frequency) an (event) outcome A happens, in relation to the number of times the event is performed

number times outcome A happened

 $Rf (outcome A) = \frac{1}{number of times event takes place (total number of trials)}$

e.g. If a biased coin is flipped 20 times and lands on tails 7 times

 $Rf(lands on tails) = \frac{7}{20}$

Relative frequencies are commonly written as decimal Rf(lands on tails) = 0.35

Relative Frequency v Experimental Probability:

Can be thought of as inter-changeable, relative frequency is used as an experimental probability.

Expectation:

Relative frequency can be used to estimate the probability of an (event) outcome A happening, and hence the expected number of times (event) outcome A would happen over a given number of observations (experiments)

Expectation of outcome $A = Rf(A) \times number$ of trials

Eg The results of rolling a biased 6-sided dice 30 times are recorded in the table

Score	1	2	3	4	5	6
Frequency	4	5	2	8	4	7

The relative frequencies can be calculated by $\frac{frequency}{total number of trials (rolls of dice)}$

Del Fred	4	5	2	8	4	7
Reiffey	30	30	30	30	30	30

i. Estimate the number of times the dice would land on 4, if rolled 120 times

Expectation of "lands on 4" = $Rf(lands on 4) \times number of trials$

Expectation of "lands on 4" = $\frac{8}{30} \times 120$ = $\frac{8 \times 120}{30}$ = 32

When rolled 120 times we would expect the dice to land on a 4,32 times.

Note: Like Probabilities, relative frequencies should always sum to 1.

Online clips

M332, M206

<u>Sample</u>

<u>Spaces</u>

Component Knowledge

- Complete a sample space diagram to show possible outcomes
- Calculate probabilities from a sample space diagram

Key Vocabulary The way something turns out Outcome Records the possible outcomes of two different events happening Sample space Event A thing that happens or takes place The chance of an event happening Probability Independent Events which do not have an effect on each other Dependent Has an effect on something else – eg Not replacing a counter when taking multiple out of a bag Creating a sample space diagram This is what a sample space would look like for spinning a Use information proved to decide whether to write a list or create 1 spinner and flipping a coin a table to find all possible outcomes. Spinner Systematically write the list or fill in the table by either listing outcomes or performing operations with values. Green Blue Red <u>Soin</u> Heads H,R H,G H,B Use the information from the list or table to find any probabilities 3 Tails T.R T,G T,B required. Finding a probability from a sample space Creating a table helps to organise the information you have and ensures that no Two dice are thrown and the possible outcomes are shown in outcomes are missed or repeated. the sample space diagram below: 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 1 You might also be asked to do a calculation 2 (2,1)(2,2)(2,3)(2, 4)(2,5)(2,6)to fill in the sample space instead of just 3 (3,1)(3, 2)(3,3)(3, 4)(3,5)(3, 6)putting the outcomes straight in. 4 (4,1)(4,2)(4,3)(4, 4)(4,5)(4, 6)5 (5,1)(5,2)(5,3)(5, 4)(5,5)(5, 6)This sample space shows the difference 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) between the outcomes when 2 dice are What is the probability that 2 numbers which are the same 1) are rolled? rolled. 4 1 2 3 5 6 outcomes where numbers are the same 1 0 1 2 3 4 5 36 total number of outcomes 2 2 4 1 0 1 3 What is the probability that two even numbers 2) 3 2 1 2 3 1 0 are rolled? 4 3 2 1 0 1 2 outcomes where numbers are both even 4 5 3 2 1 0 1 total number of outcomes 6 4 3 2 0 **Online clip** M718

Example: 80 children went on a school trip.

They went to London or to York.

23 boys and 19 girls went to London.

14 boys went to York.

(a) Use this information to complete the two-way table.

Step 2- calculate missing values using the known values. Remember both the horizontal and vertical totals must equal the overall total, in the case below, = 80.

Interpreting two-way tables

We can now use the fully completed two-way table to interpret the data.

	London	York	Total
Boys	23	14	37
Girls	19	24	43
Total	42	38	80

Questions could look like this:

a) How many students went to London?

We can read from the table vertically and see there were 42 students who visited

b) One of these 80 students is chosen at random.What is the probability that this student visited London?

We can read from the table vertically and see there were 42 students who visited London.

So, the $P(a \text{ student visits London}) = \frac{42}{80}$

c) A student is picked at random.

Given they are a girl, what is the probability they went to York?

We can read the table to find the total girls = 43 and the girls who visited York = 24

So, the *P*(given the student is a girl, they visit York) = $\frac{24}{42}$

Online clip

M899

Venn

Diagr<u>ams</u>

Component Knowledge

- Complete a Venn Diagram when given a set of data
- Fill in missing values in a Venn Diagram
- Interpret a Venn diagram
- Find probabilities from a Venn Diagram
- Use simple set notation

Key Vocabulary A collection of "things" (objects or numbers) Set Union The set made by combining the elements of two sets Intersection The intersection of two sets has only elements common to both sets Probability The change that something happens A diagram that shows sets which elements belong to which set by drawing regions around them. Venn Diagram It is used to represent data that has an overlap. Key Concepts **Example** Venn diagrams show all possible relationships Out of 50 people surveyed: between different sets of data. 30 have a brother $\mathbf{A} \cap \mathbf{B}$ The **intersect** of A and B. 25 have a sister The set of elements in both A and B. 8 have both a brother and a sister This is what the Venn Diagram for this information A U B would look like The **union** of A and B. The set of elements in A or B or both. В Ĕ (30-8)(25-8) = 22 8 = 17 R The complement of B.

Venn Diagrams with 3 sets

Diagrams can be drawn to show more than 2 sets of data This is an example of a Venn Diagram containing 3 sets.

The set of elements not in B.

S = {Alex, Hunter, Casey and Drew}

T = {Jade, Casey and Drew}

V = {Drew, Jade and Glen}

Remember - the people in the intersection are also included in the whole circle so we don't duplicate data.

From the Venn Diagram, we can see that the probability of someone from this group just having a brother is 22/50.

The probability of someone from this group having neither a brother or a sister is 3/50.

The probability of having a brother and a sister,

$$P(A \cap B) = \frac{8}{50}$$

Ave	rages		<u>Compone</u>	ent Knowledge	
W W H S		 To To To To av 	understand and understand and understand and calculate the rar erage.	calculate the mode from a list. calculate the median from a list. calculate the mean from a list nge and understand it is not an	
:		Kev Vocab	ularv		
Data set	New Vocabulary Data set Collection of values that share a common relationship. This could be answers to a set				
Average	Is a value (or valu	es) that is used to r	epresent a whole	data set	
Mode	The most frequer more mode.	t value in a data se	t. It is a type of ave	erage. Modal is another word used	
Median	The middle value	of a data set, when	ordered. It is a ty	pe of average.	
Mean Range	A measure of the A value to show s the whole data se	size of the data wh pread out a data se t the average used	en shared out equ t is. It can be used is. IT IS NOT AN A'	ally. It is a type of average. I to describe how representative of VERAGE.	
<u>Averages</u>					
We use averages t we can interpret l	to summarise a arge data sets (whole data set and also compar	in a single value e data sets mo	e/few values. We do this so pre easily.	
<u>Mode</u> - the most fi set of data.	requent value/ ·	few values in a d	lata set. There	e can also be no mode in a	
Ex 1, find the mod	le:				
blue red	blue gre	en blue	blue		
pink green	blue rec	l blue	yellow	<u>Blue is the mode.</u>	
Ex 2, find the mode:					
9, 4, 3, 6, 9, 5, 2, 1, 8, 7					
To make it easier,	we can re-writ	e these values i	n ascending(ind	creasing) order.	
1, 2, 3, 4, 5, 6, 7, 8, 9, 9. We can now see clearly 9 is the mode.					
Ex 3, find the mode:					
9, 4, 3, 6, 9, 5, 2, 1, 8, 7, 3					
Re-written 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 9 We can see 3 and 9 are the modal values.					
	** We usua	lly only have 1, a	2 or 3 modal va	llues**	
Ex 4, find the mod	de:				
4, 3, 6, 9,	5, 2, 1, 8, 7				
Re-written 1, 2, 3	8, 4, 5, 6, 7, 8	, <mark>9</mark> We <u>can see</u>	there are NO	<u>) modal values.</u>	

<u>Mean-</u> The mean is the size of each part when a quantity is shared equally. We can do this by adding all the values in the data set together and then dividing it equally between the number of values.

Component Knowledge

- Complete a Venn Diagram when given a set of data
- Fill in missing values in a Venn Diagram
- Find probabilities from a Venn Diagram

when

Notation

Key Vocabulary

Set	A collection of "things" (objects or numbers)
Union	The set made by combining the elements of two sets
Intersection	The intersection of two sets has only elements common to both sets
Complement	All elements from a universal set not in our set
Element	Things contained in a set

Key Concepts

A set can be a list of items known as elements

A subset would be a selection of these elements.

When we list elements within a set, we use these curly brackets { } and separate each elements in the list with commas.

The universal set, ξ , is the list of every element that there is available to choose from.

The complement of a set is denoted with an apostrophe and would be the remaining elements in the universal set that are not part of that set.

Symbol	Description	
{}	Curly brackets - contain all items in a set	
,	Comma - separates items in a set	
,	Complement - the items not in a set	
ξ	The Universal Set - contains all items in every set and subset required	These are the
ϕ	The Empty Set - contains no items	different
A	Set A	symbols you
A'	Not Set A (the complement of Set A)	may see when
B	Set B	working with
B'	Not Set B (the complement of Set B)	set notation
$A\cap B$	A and B (A intersection B)	
$(A\cap B)'$	Not A and B (the complement of A intersection B)	
$A\cup B$	A or B (A union B)	
$(A\cup B)'$	Not A or B (the complement of A union B)	
n(A)	The number of elements in A. The cardinality of A	

